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Carbon nanotubes are a relatively new area of research which has gained

significant attention in published literature. One reason for this interest is their use

in multi-phase composites, specifically where they can enhance traditional polymer

matrices. Many authors have attempted to adapt conventional micromechanical

analyses reserved for microfibers to the nano scale. A review of these works is

presented. In depth analysis is provided on one of these two phase (nanotube and

matrix) models, the Anumandla-Gibson model, originally published in 2006. A

discussion of its strengths and sensitivities is given, with numerical data to support

the conclusions. It is extended to three-phase composites through the use of classical

laminated plate theory. A literature survey is conducted to gather published two

and three-phase experimental results for comparison. Two phase experimental

results agree well with the present model, whereas three phase data was limited, but

initial comparisons were promising.
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CHAPTER 1

INTRODUCTION

Since their discovery in 1991, carbon nanotubes have been given considerable

attention due to their exceptional stiffness, strength, and electrical properties. An

ongoing area of research is investigating the nanotube’s ability to serve as a

reinforcement in conventional polymer matrices. Traditional unidirectional composite

materials are known for their exceptional stiffness along the fiber direction, but suffer

from poor out-of-plane properties. These off-axis properties are dominated by the

matrix, and any enhancement to the matrix enhances these properties. Before

nanotubes can be practically used however, we must have a way of estimating their

stiffness contribution to see the degree of reinforcement they offer and if it is worth it.

Many “micromechanical” models exist for the prediction of microfiber lamina

stiffness. Several authors have attempted to extend these models to the nano scale

for nanocomposite analysis. Herein is presented a review of the current work done

toward this goal, with an analysis of the benefits and drawbacks of each. Nanotube

form is identified as an important parameter in stiffness predictions due to the

sensitivity of nanotube modulus to geometry. In addition to the nanotubes’ form,

three other factors are discussed which are necessary for reliable nanocomposite

stiffness predictions. These are nanotube dispersion in the matrix, orientation effects,

and waviness effects.

The Anumandla-Gibson (A-G) model is a micromechanical framework which is

chosen for detailed analysis, discussion of sensitivities, and comparison with published

experimental results. The original model makes use of C.C. Chamis’

micromechanical equations for analyzing a representative volume element (RVE)
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consisting of matrix and nanotube. Since nanocomposites are generally fabricated at

low nanotube volume fraction loadings, the A-G model is modified by replacing the

Chamis equations with the Halpin-Tsai equations, which are known to agree well

with experimental results of microfiber composites. Using classical laminated plate

theory, the present model is then extended to the realm of so called “three-phase”

composites which use microfibers and a matrix reinforced with carbon nanotubes.

Again comparisons are made to the published experimental results. All of this is

accomplished through development of a comprehensive MATLAB framework to test

various combinations of fiber, matrix, and nanofiber in order to simulate experimental

results.

Good agreement is seen between the original and modified models and two-phase

experimental data. However, the modified A-G model offers a smaller range of

possible waviness values, which is important for several reasons. Three-phase

composite data is limited to one data-set, but initial results are promising given that

the present model predicts experimental results for unidirectional and quasi-isotropic

laminates to within a few percent.
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CHAPTER 2

LITERATURE REVIEW

2.1 Properties of Carbon Nanotubes

2.1.1 Form

Carbon nano-reinforcements exist in several forms, most notably single-walled

carbon nanotubes (SWNTs), multi-walled carbon nanotubes (MWNTs), and carbon

nanofibers (or nanoropes). The basis for each of these forms is the single-walled

nanotube, which is a rolled up graphene sheet composed of carbon in a planar

hexagonal structure, like that shown in Figure 2.1 [1].

FIGURE 2.1. Single walled carbon nanotubes with varying chiral vectors. [2]
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Different geometries of SWNTs can be made depending on the degrees of twist,

which is described by the tube’s “chiral” or “roll-up” vector, Ch, in the form (Pipes et

al. [3]):

Ch = na1 +ma2 (2.1)

where (n,m) are the integers shown in parenthesis in the right of the Figure 2.1. The

case where n > 0 and m = 0 is termed “zigzag”, n = m is “armchair”, and anything

else is “chiral”. A nanotube’s roll up vector is significant in determining some of its

properties (e.g. electrical conductance) and less so for others (e.g. stiffness). Gao et

al. performed molecular dynamics simulations to investigate the effect of chirality on

nanotube stiffness and found that for approximately equal nanotube diameters,

stiffness was not a strong function of chirality [4]. With the focus of this study being

on nanocomposite stiffness, chirality will not be considered.

Multi-walled nanotubes (Figure 2.2) consist of a series of concentric SWNTs and

have diameters on the order of nanometers (depending on the number of SWNT

layers) with possible lengths in excess of 1mm [5]. These length scales also apply to

nanofibers (Figure 2.3), where instead of being concentric, SWNTs are bound tightly

together in a crystalline array through Van der Waals forces [2]. Collectively, these

and other tube forms will be referred to as carbon nanotubes, CNTs.
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FIGURE 2.2. Multi-walled nanotube schematic. [2]

FIGURE 2.3. SWNT bundle (carbon nanofiber). [2]

2.1.2 Young’s Modulus, Geometry, and Density

For simplicity’s sake, it is tempting to assign a Young’s Modulus to a nanotube

form for use in a micromechanical model, as is done with conventional microfibers.

To this end, several studies have attempted to predict an elastic modulus for carbon

nanotubes, but have reported a wide range of values. For example, Lourie and

5



Wagner [6] give SWNT modulus values between 2.8 - 3.5 TPa and MWNT values

between 1.7 - 2.4 TPa, whereas Sanchez et al. [7] and Yakobson and Avouris [8] report

MWNT moduli being approximately 1 TPa and relatively independent of diameter.

These and other large discrepancies are due in part to the authors treating nanotubes

as they would a continuum, without careful consideration of their discrete nature.

Yakobson and Avouris [8] state that defining an elastic modulus implies a

statistical spatial uniformity of the material. Since characteristic nanotube

dimensions are on the same order as the dimensions of the carbon atoms that the

tube is comprised of, there is a lack of “translational invariance” in the radial

direction. Thus, a nanotube (whether SWNT, MWNT, or CNF) is not a material,

but is more accurately an engineering structure [8]. Since CNTs must be treated as

engineering structures, one cannot define an effective stiffness without taking into

consideration the geometry of the CNT in question.

Pipes et al. [3] studied in-depth the intercorrelation between SWNT geometry,

density, and tensile modulus by first considering the SWNT as a shell with thickness

ν = 0.34nm, the planar separation between layers in graphite. Figure 2.4 (a) depicts

the shell model and also shows the carbon atoms comprising the shell. The midplane

radius, Rn, of the shell is a function is a function the nanotube’s chirality and the

carbon-carbon bond length, 1.421 Å [9]. With this information, the cross sectional

area of the open cylinder can now be defined. This area is then assigned a modulus

En = 1029GPa, the in-plane modulus of graphite.
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FIGURE 2.4. SWNT and equivalent filled cylinder. [3]

The product of area and modulus of the open cylinder allows an effective solid

cylinder (Figure 2.4 (b)) modulus to be defined through a simple scaling relation.

The effective modulus of the solid cylinder will be less than that of the shell model,

but the area-modulus product will be identical, i.e. (adapted from Thostenson and

Chou [1]):

Esolid =
Aopen
Asolid

× Eopen (2.2)

This process yields Figure 2.5, where it can be seen that, depending on SWNT

diameter, Young’s modulus can vary drastically.
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FIGURE 2.5. Young’s modulus of SWNT vs diameter. [3]

A similar process and results are obtained for nanotube arrays, and one could

extend the SWNT results to MWNTs by considering the added shell thickness from

additional nanotubes.

With nearly all micromechanical models, the volume fraction of the reinforcement

in the composite is used. However, as will be seen later, a majority of experimental

work done with CNTs provide loadings in terms of weight. This necessitates a

definition of a density to allow conversion from weight to volume. The same

arguments and complications for defining a Young’s Modulus apply to defining a

density. Pipes et al. also tackle this discrepancy through a process similar to that

described above except instead of assigning a modulus to the open cylinder, a mass is

assigned, namely the mass of the carbon atoms comprising the shell. That mass is
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then assumed to occupy the volume of the solid cylinder, giving an effective density.

Figure 2.6 shows the result of this exercise.

Figures 2.5 and 2.6 clearly indicate the sensitivity of nanotube properties to its

geometry, thus any attempt to predict CNT reinforcing capabilities in two or

three-phase composites must begin with consideration of nanotube geometry.

FIGURE 2.6. Density of SWNT vs diameter. [3]

2.2 Carbon Nanotube Reinforced Composites

Carbon nanotubes posses mechanical, thermal, and electrical properties which are

equal or superior to any current materials which makes them an attractive candidate

for enhancing a variety of matrices. They would offer immediate benefits in

structures which cannot accommodate conventional reinforcement, such as polymer
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fibers, foams, and films [10]. Their added benefit extends to conventional carbon

fiber reinforced polymer composites (CFRPs) as well. CFRPs generally suffer from

poor properties in off-fiber directions where material characteristics are dominated by

matrix properties [11].

There exists two primary methods of incorporating CNTs in a conventional CFRP,

either by grafting CNTs directly on to the microfiber surface, or by dispersing CNFs

in the matrix material prior to manufacture. Both of these are depicted in Figure 2.7.

Grafting CNTs on to microfibers is a relatively newer area of CNT reinforcement, and

is not amenable to traditional micromechanical approaches nor an established

manufacturing process. The process of grafting CNTs involves temperatures in the

range of 700 to 1200 ◦C, high enough to damage fiber mechanical properties [12].

The most tractable and economically feasible route of CNT incorporation is, at this

point, adding CNTs directly to the matrix [11]. After CNTs are incorporated into

the matrix, traditional manufacturing methods may be used to make two or

three-phase composites (e.g. injection molding [13], prepregs with autoclave cure [14],

VARTM [15]). For these reasons, the work presented here will focus on the case of

adding CNTs directly to the matrix.
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FIGURE 2.7. The two primary types of three-phase composites. [10]

There are four topics which any micromechanical model must address when

predicting reinforcement capability of CNTs [16, 17, 18].

1. Dispersion/Agglomeration of CNTs. Nanotubes and other nanoreinforcements

exhibit exceptionally high surface area to volume ratios compared to conventional

reinforcements (see Figure 2.8). While beneficial to interfacial stress transfer, this

large surface area also causes CNTs to have a strong tendency to bundle together to

form agglomerations, which can act as defects in a two or three-phase composite [19].

Usually in micromechanical analyses, the assumption of uniform dispersion is made.
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FIGURE 2.8. Surface area/volume vs diameter. [19]

2. Orientation. CNTs have been shown to be highly anisotropic, with off axis

properties being an order of magnitude less than on axis [20, 21]. If nanotubes tend

to orient in one direction more than others (as was done in Thostenson and Chou[1]

and Mora et al. [22] through a drawing process), their anisotropy may be transferred

to the composite.

3. Length and Aspect Ratio. Microfiber length has been known to be an important

parameter for conventional composites for decades. Coleman et al. [18] present both

a modified rule-of-mixtures and the Halpin-Tsai micromechanical models which

incorporate length efficiency parameters. The general rule is that, the longer the fiber

is, the more efficient it is due to an increased area available for stress transfer from

the matrix to the fiber. This is expected to apply to nanotube reinforcements as well.

4. Waviness. Relatively little work has been done to model the effects tube

waviness has on mechanical properties of CNT reinforced composites [16, 23, 24, 25].

It is common to see micromechanical approaches that consider CNTs straight to

12



simplify analyses [1, 13, 17, 26, 27, 28]. This simplification, however, usually leads to

an overestimation of predicted stiffness due in large part to the fact that nanotubes

are decidedly not straight in experimental settings (without special processes to

encourage alignment, e.g. drawing). Figure 2.9 is a TEM image of MWNTs

dispersed in a polystyrene matrix where one can see the varying degrees of curvature.

This waviness degrades the reinforcing capabilities of CNTs and thus must be

accounted for.

FIGURE 2.9. TEM image of a MWNT/polystyrene film. [29]

Interfacial shear strength between the fiber (whether CNF or microfiber) and

matrix is an important parameter in the normal use of composites, but less so when

making stiffness predictions. The perfect bonding assumption is made, and for low

strain conditions, this assumption is valid.
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2.3 Prediction of CNT Reinforced Composite Properties

Here, a review of micromechanical approaches published in literature is given.

Sections are broken up for each different model used, with special attention being

given as to how each addresses the four key points from section 2.2.

2.3.1 Rule-of-Mixture

FIGURE 2.10. RVE for determination of tensile modulus. [30]

The Rule-of-Mixture is a mechanics of material approach which seeks to

determine composite properties from the independent properties of the matrix and

fiber and the volume fraction of the fiber. It yields simple algebraic relations for

composite properties and, for on-axis properties (i.e. E1 and ν12 referring to

Figure 2.10), gives good results. If one assumes equal strain between fiber and matrix

when subject to a strain σ1, then the tensile modulus can be derived as (Jones [30]):

Ec = Efvf + Em(1− vf ) (2.3)

Similar derivations can be made for the four other elastic properties (assuming a

transversely isotropic lamina) and will not be repeated here.
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Liu and Chen [27, 31] compared the rule of mixtures approach for short and long

nanofibers with finite element predictions for a cylindrical representative volume

element (RVE), shown in Figure 2.11.

FIGURE 2.11. Cylindrical RVEs for long and short nanofibers. [31]

For the long CNT, the authors reported no difference between the rule-of-mixtures

result for E1 and finite element predictions. In the case of the short CNT, the RVE

was subdivided in to three regions as shown, and tensile modulus was predicted using

an inverse or modified rule-of-mixture in the form of (using notation from

Figure 2.11):

1

Ez
=

1

Em

(
Le
L

)
+

1

Ec

(
Lc
L

)(
A

Ac

)
(2.4)

This method yielded modulus values only a few percent different from that of the

finite element results. The long nanotube improved matrix modulus over 30% while

the short nanotube improved reinforcement on the order of 5%. These studies

demonstrated the potential for nanotube reinforcement and how that potential is
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influenced by length. They did not address the characteristic waviness and varying

orientation nanotubes can take when infused with a matrix.

Griebel and Hamaekers [17] and Frankland et al. [32] conducted molecular

dynamics (MD) simulations on two RVEs very similar to that of Liu and Chen

[27, 31], Figure 2.11. Rule of mixtures and molecular dynamics predictions for long

nanofiber are shown in Figure 2.12. It can be seen that the rule of mixtures agrees

well with MD results, especially at low strains (< 2%). Again, however, these models

do not address waviness or orientation.

FIGURE 2.12. Stress-strain curve from molecular dynamics simulations. [32]

Coleman et al. [18] presents the rule of mixtures with two added terms to account

for orientation and length effects in the form of:

Ec = (ηoηlEf − Em)Vf + Em (2.5)
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where ηo accounts for orientation effects and ηl for length effects. For aligned fibers,

fibers oriented in plane, and random orientation of fiber, ηo takes the values of 1, 3/8,

1/5 respectively. ηl is a function of fiber length, diameter, tensile modulus, volume

fraction, and the modulus of the matrix.

Omidi et al. [33] is the only rule of mixtures model reviewed which incorporates

length, orientation, and waviness of nanotubes. This model uses the same length and

orientation parameters as Coleman et al. [18], but adds two additional terms

(presented in modified form for comparison with other rules of mixture):

Ec = (ηoηlηωEf − Em)Vfe
αVnt + Em (2.6)

where ηω = 1− a
w

and a and w are the amplitude and wavelength of an assumed

sinusoidally-wavy nanotube. The exponential term is used to account for the

non-linear relationship between nanotube volume fraction and Young’s Modulus at

higher loadings. The authors report good agreement with experimental results, as

evidenced by Figure 2.13 [33]. However, judging by the results of other

micromechanical models to be presented, the linear degredation of CNT modulus

with increasing waviness ( a
w

) is not sufficient to capture how rapidly the modulus is

reduced. Many studies [16, 21, 23, 24, 25] report highly non-linear reduction of

modulus. For example, for a nanotube to matrix modulus ratio of 1000 (a typical

value), increasing waviness from 0 (perfectly straight) to 0.1 results in a 50% loss of

composite stiffness.
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FIGURE 2.13. Modulus vs MWNT volume fraction for various waviness values. [33]

2.3.2 Halpin-Tsai

The Halpin-Tsai equations are a set of semi-empirical relationships which are

“handy forms” of Hill’s generalized self-consistent micromechanical model [34]. They

have gained wide spread use for composite material predictions due to their

simultaneous simplicity and accuracy. The equations exist in several forms,

depending on reinforcement packing and orientation. For a composite reinforced with

randomly oriented fibers and including length effects, the Halpin-Tsai equations take

the form [18]:

Ec
Em

=
3

8

[
1 + ηlvf
1− ηlvf

]
+

5

8

[
1 + 2ηtvf
1− ηtvf

]
(2.7)

where:

ηl =
Ef/Em − 1

Ef/Em + 2(l/d)f
and ηt =

Ef/Em − 1

Ef/Em + 2
(2.8)

Figure 2.14 shows experimental results of Kanagaraj et al. [13] plotted against

Equation 2.7 predictions. Despite the apparent good agreement with experimental

18



results, waviness was not considered in this study. Two possibilities for this good

agreement despite disregarding waviness are:

1. The authors reported aspect ratios in the range of 50-250, though no

distribution is identified. If the nanotubes were predominantly lower in aspect ratio,

the assumption of zero waviness would be closer to reality since shorter tubes are

more resistant to bending.

2. A MWNT modulus of 910GPa is used. Depending on the thickness of the

MWNT, this may or may not be a good estimation. If modulus used in predictions is

too high, it may make up for the actual reduced modulus in experiment.

FIGURE 2.14. Halpin-Tsai predictions for CNT reinforced high-density polyethylene.
[13]

2.3.3 Mori-Tanaka

The Mori-Tanaka method is another micromechanical construct but with the

additional ability to model interactions between inclusions (in this case, nanotubes).
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The details of this method are beyond the scope of this work, but for completeness it

is noted that several authors report good results using this method. Fisher et al. [16]

and Odegard et al. [26] used the Mori-Tanaka model to predict reinforcement of

straight, randomly distributed, and randomly oriented nanotubes. Seidel et al. [28]

and Shi et al. [21] used it to address agglomeration of CNTs, with the former

considering straight fibers and the latter considering wavy fibers. Yanase et al. [25]

employed the model including waviness effects through Hsaio and Daniel’s [35] model

for wavy microfibers.

2.3.4 Anumandla-Gibson Model

Anumandla and Gibson [23] presented a comprehensive micromechanics model

which has several attractive features. It is based on existing micromechanics models,

and produces simple algebraic equations to predict CNT reinforced composite

properties. The model captures key expected behaviors, such as drastic modulus

reduction with increasing waviness and random fiber orientation, and compares well

with experimental results. Chapter 3 reproduces the model in detail and discusses its

strengths and weaknesses. Chapter 4 then compares predictions with experimental

results from literature.
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CHAPTER 3

METHODS

3.1 Anumandla-Gibson

3.1.1 Mathematical Development

FIGURE 3.1. RVEs used in A-G model. [23]

The Anumandla-Gibson model uses a two-RVE approach, as depicted in

Figure 3.1. The first step in the process is to estimate the properties of RVE1. At

this point it is assumed that the fiber is straight, isotropic, and since it spans the

entire RVE, is continuous. The Chamis [36] micromechanics equations are used for
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this and take the form:

E11 = vfEf + vmEm (3.1)

E22 = E33 =
Em

1−√vf
(

1− Em

Ef

) (3.2)

G12 = G13 = G23 =
Gm

1−√vf
(

1− Gm

Gf

) (3.3)

ν12 = ν13 = vfνf + vmνm (3.4)

ν23 =
E22

2G12

− 1 (3.5)

With the properties of RVE1 now known, RVE1 compliances (for a

zero-fiber-waviness condition) can be calculated. Assuming a thin unidirectional

lamina under plane stress, the compliances are (Daniel and Ishai [37]):

S11 = 1/E11 (3.6)

S22 = 1/E22 (3.7)

S12 = S21 = − ν12
E11

= − ν21
E22

(3.8)

S66 =
1

G12

(3.9)

Effects of fiber waviness may now be included. Hsaio and Daniel [35] take an

RVE similar to that of RVE1 in Figure 3.1 and slice it in to infinitesimal pieces of

width dx. Each slice is treated as an off-axis lamina whose properties may be

calculated using standard micromechanical approaches and transformed using the

standard transformation matrix. Averaging the strains over one wavelength of

waviness and having knowledge of the applied stresses allows calculation of effective
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properties of the form (Hsiao and Daniel [35]):

Ex =
σx
ε̄x

=
1

S11I1 + (2S12 + S66) I3 + S22I5
(3.10)

νxz =
ε̄z
εx

=
[(S11 + S22 − S66) I3 + S12 (I1 + I5)]

S11I1 + (2S12 + S66) I3 + S22I5
(3.11)

Gyz =
1

2 (S22 − S23) I6 + S66I8
(3.12)

Gxz =
1

4 (S11 + S22 − 2S12) I3 + S66 (I1 − 2I3 + I5)
(3.13)

The I terms account for of waviness, and are defined as:

I1 =
1 + α2/2

(1 + α2)
3
2

I3 =
α2/2

(1 + α2)
3
2

I5 = 1− 1 + 3α2/2

(1 + α2)
3
2

I6 =
1

(1 + α2)
1
2

I8 = 1− I6

(3.14)

where α = 2π
(

A
LNT

)
and A/LNT is the degree of waviness, quantified by the ratio of

the amplitude of the sinusoid to the length of RVE1. This ratio will henceforth be

referred to as the “wavy factor.” Wavy factors of 0, 5, 10, 25, and 50% are used in

modulus vs volume fraction plots to be shown.

The transverse plane strain bulk modulus must be calculated, which requires bulk

moduli for the fiber and matrix. These are as follows:

Kf =
Ef

2(1− 2νf )(1 + νf )
(3.15)

Km =
Em

2(1− 2νm)(1 + νm)
(3.16)

Kzy = K2 =
(Kf +Gm)Km + (Kf −Km)Gmvf

(Kf +Gm)− (Kf −Km)vf
(3.17)

Orientation effects are then incorporated through the model of Christensen and Waals

[38], with RVE1 strains being averaged over all possible orientations of the nanotube.
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This gives an effective isotropic modulus and Poisson ratio for RVE1 in the form of:

Ẽ = E3D−RV E1 =
[Ex + (4ν2xz + 8νxz + 4)Kzy][Ex + (4ν2xz − 4νxz + 1)Kzy + 6(Gzy +Gzy)]

3 [2Ex + (8ν2xz + 12νxz + 7)Kzy + 2(Gxz +Gzy)]

(3.18)

ν̃ = ν3D−RV E1 =
Ex + (4ν2xz + 16νxz + 6)Kzy − 4(Gxz +Gzy)

4Ex + (16ν2xz + 24νxz + 14)Kzy + 4(Gxz +Gzy)
(3.19)

It is important to note here that Christensen and Waals assume transverse isotropy.

For a straight nanofiber (0% wavy factor), this assumption is applicable. However, as

the wavy factor is increased, portions of the embedded nanotube of RVE1 begin to

align along the transverse (z in Figure 3.1) direction. This would violate the

transversely isotropic assumption, making RVE1 generally orthotropic. Despite this,

the model keeps the transverse isotropy assumption. Waviness induced degradation

of tensile modulus is captured in Ex, but increased transverse stiffness is not

accounted for.

An effective isotropic modulus and Poisson ratio for RVE2 is then computed using

an inverse rule of mixtures, similar to that of Equation 2.4.

1

E3D−RV E2

=
1

E3D−RV E1

(
LNT

Lm + LNT

)
+

1

Em

(
Lm

Lm + LNT

)
(3.20)

1

ν3D−RV E2

=
1

ν3D−RV E1

(
LNT

Lm + LNT

)
+

1

νm

(
Lm

Lm + LNT

)
(3.21)

3.1.2 Sensitivities

3.1.2.1 Volume fraction inside RVE1. In conventional micromechanical analyses

of microfiber composites, RVEs similar to Figure 3.1 are used, with the exception

that the area of RVE1 is entirely composed of fiber material. To define a volume

fraction of RVE1 for microfiber analysis would be nonsense since, by definition, the
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fiber volume fraction would always be 100%. Thus, the volume fraction of the

composite would be completely defined by the length ratios of the segments in the

RVE, LNT and Lm here. This is not the case with the A-G model.

The Chamis equations that are employed to calculate RVE1 mechanical properties

in subsection 3.1.1 contain the fiber volume fraction term vf . This volume fraction is

not, however, the fiber volume fraction for the composite since RVE2 has added the

two sections of matrix material on either end of RVE1. The volume fraction in RVE1

must therefore be greater than the composite volume fraction (i.e. RVE2 volume

fraction). The volume fraction inside of RVE1, νf−RV E1, must satisfy the relationship

vf−composite = vf−RV E1

(
LNT

Lm + LNT

)
(3.22)

to ensure composite volume fraction reflects reality. This equation contains two

related unknowns, which leaves two possible routes of solving it. One must either

choose a value for the ratio of LNT/Lm and solve for RVE1 volume fraction, or select

a value for νf−RV E1 and solve for the length ratio. Since neither of these are physical

properties of the nanotube or matrix, it is difficult to get an idea of what value they

should take.

To add to this, predictions made by the A-G model are particularly sensitive to

the choice of RVE1 volume fraction. If we define vf−RV E1 as:

vf−RV E1 = vf−composite + vf−added (3.23)

where νf−added is an arbitrary additional volume fraction percentage over the

composite’s volume fraction, it is possible to test the sensitivity of the model to

νf−added. Figures 3.2 and 3.3 depict results using νf−added values of 1 and 10% for a

1% CNF volume fraction composite. These graphs show the vastly different modulus

predicted for each case. For example, at 25% volume loading and zero waviness, the
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νf−added = 1% case predicts a modulus of about 17GPa whereas the νf−added = 10%

predicts about 3.4GPa. In chapter 4 a νf−added of 5% is used since it provides

reasonable predictions compared to experimental results and other models, as will be

seen.
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FIGURE 3.2. 1% additional CNF volume fraction in RVE1 (vf−added = 1%).
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FIGURE 3.3. 10% additional CNF volume fraction in RVE1 (vf−added = 10%).

3.1.2.2 Micromechanical model in RVE1. In the Anumandla-Gibson model, there

are actually two sets of micromechanical equations that are used. The Chamis

equations are used to predict RVE1 properties, and an inverse rule of mixtures is used

to predict RVE2 properties. It is not immediately clear how appropriate the Chamis

equations are for use here, so they were replaced by the Halpin-Tsai equations to

gauge if either had an advantage over the other. The Halpin-Tsai equations, for

microfiber composites, are known to fit experimental data well at low volume fractions

[18]. Since CNT composites are almost exclusively fabricated at low loadings

(≤ 10%), the Halpin-Tsai model may show improvement over the Chamis model.

The generalized Halpin-Tsai model is as follows [39]:

P̄c
Pm

=
1 + ζηvf
1− ηvf

(3.24)
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where

η =

Pf

Pm
− 1

Pf

Pm
+ ζ

(3.25)

P̄c is a composite property (E22, G12, or ν23), and Pm or Pf is the corresponding

matrix or fiber property. ζ is a measure of reinforcement and depends on boundary

conditions. Generally accepted values used for ζ are:

TABLE 3.1. Halpin-Tsai Parameter Values

Property ζ Reference

E22 2 [39]
G12 1 + 40v10f [30]
ν23 1

For E11 and ν12, ζ takes on a very large value for continuous fiber composites. In

the limit as ζ →∞, the Halpin-Tsai equations reduce to the rule of mixture. Thus

the rule of mixture (Equation 2.3) is used in calculation of these properties. It should

be noted that Equation 3.24 and Equation 2.7 are equivalent, with the exception that

Equation 3.24 is a more generalized form, applicable to short and long fiber

composites, depending on choice of parameters.

Figure 3.4 shows the result of this exercise. It can be seen for zero waviness, the

two models produce identical results, which is expected. However, with increasing

waviness, the Halpin-Tsai model shows a quicker reduction in modulus. At

sufficiently low loadings and high waviness, the Halpin-Tsai equations actually predict

a reduction in modulus. Chapter 4 will compare both the Chamis and Halpin-Tsai

predictions to experimental results.
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FIGURE 3.4. Results for Chamis and Halpin-Tsai models used in RVE1.

3.1.2.3 Isotropic vs transversely isotropic CNFs. One of the key simplifying

assumptions made in the A-G model is that the embedded nanotube is isotropic.

Though, as was previously mentioned in section 2.2, nanotubes are decidedly not

isotropic. It is desired to see how large of an impact this assumption has on model

predictions.

The Chamis and Halpin-Tsai micromechanical models are able to handle

transversely isotropic reinforcement, so no modification of the equations are necessary.

What is needed are representative off-axis nanotube properties. Several research

efforts have been made to predict these properties, and Table 3.2 gives values selected

for simulation.

Figures 3.5 and 3.6 depict predictions using an isotropic and a transversely

isotropic fiber. The difference between the plots is negligible. For example, at 5%

waviness and 25% volume fraction each model predicts values shown in Table 3.3.
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TABLE 3.2. Transversely Isotropic CNT Properties

Property Value Reference

E11 1TPa [4] ((9,0) High AR uncapped)
E22 68.3GPa [20]
G12 0.37TPa [40] (1 CNT wall torsion test)
ν12 0.3 [23]
ν23 0.34 [20]

TABLE 3.3. RVE2 Sample Results for Isotropic and Transversely Isotropic CNFs,
5% waviness, 25% Volume Fraction

Model
Case

Isotropic Transversly Isotropic

Chamis 2.987GPa 2.981GPa
Halpin-Tsai 2.643GPa 2.629GPa

Similar results are seen for other volume fractions and waviness values. These

suggest that considering a fiber to be isotropic is a good assumption for this model.

This is likely due to nanofibers being assumed to be uniformly dispersed and

randomly oriented, along with the fact that primary stiffness contributions come from

the nanotubes’ exceedingly high tensile modulus.
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FIGURE 3.5. Waviness plot for isotropic fiber.
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FIGURE 3.6. Waviness plot for transversely isotropic fiber.
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3.1.2.4 Nanotube form. As mentioned in chapter 2, nanotubes come in various

forms. This (and other) micromechanical model makes no distinction between, for

example, a single-walled or multi-walled nanotube, and considers all to be solid. For

stiffness predictions, this assumption seems to be a good one since experimental and

model results show fair agreement in chapter 4. This would probably not be the case

if composite strength was under consideration. For example, SWNTs and MWNTs

have different failure modes, where MWNTs have a tendency to undergo a “sword in

sheath” failure where nanotube layers slide relative to each other [18]. This isn’t

possible in a SWNT since it is only one layer.

3.2 Classical Laminated Plate Theory

Details of classical laminated plate theory relevant to this work are adapted from

[37] and presented here. In-depth explanations are available in several composites

analysis books and reports[30, 35, 41, 42].

There are eight basic assumptions CLPT makes [37, 41]:

1. Each layer of the laminate is quasi-homogenous and orthotropic

2. The laminate thickness is very small compared to its other dimensions

3. All displacements are small compared with the thickness of the laminate

4. Displacements are continuous throughout the laminate

5. In-plane displacements vary linearly through the thickness of the laminate.

6. Straight lines normal to the middle surface remain straight and normal to that

surface after deformation.

7. Strain-displacement and stress-strain relations are linear

8. Normal distances from the middle surface remain constant.
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FIGURE 3.7. Strain definitions for CLPT. [41]

The stress-strain relations for each individual lamina, in its own coordinate

system is (1-direction along the fiber):


σ1

σ2

τ6

 =


Q11 Q12 0

Q21 Q22 0

0 0 Q66



ε1

ε2

γ6

 (3.26)

Where the Q (stiffness) terms are defined as follows:

Q11 =
E1

1− ν12ν21
(3.27)

Q22 =
E2

1− ν12ν21
(3.28)

Q12 = Q21 =
ν21E1

1− ν12ν21
=

ν12E2

1− ν12ν21
(3.29)

Q66 = G12 (3.30)
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The elastic moduli (E1, E2), shear modulus (G12), and Poisson ratio (ν12) are that

of the laminate. These must be estimated by yet another micromechanical model. If

a CNT reinforced matrix is used, it would be accounted for here.

To do this, the Halpin-Tsai model used in section 3.1.2.2 is also used here with

the same parameters. This gives us knowledge of on-axis properties. If the lamina is

off-axis in lay-up, then these properties must be transformed in to the global laminate

system, x (0◦) and y (90◦). This is done as follows:


Qxx Qxy 2Qxs

Qyx Qyy 2Qys

Qsx Qsy 2Qss

 = [T−1]


Q11 Q12 0

Q21 Q22 0

0 0 2Q66

 [T ] (3.31)

where T is the transformation matrix defined as:

[T ] =


cos2 θ sin2 θ 2 cos θ sin θ

sin2 θ cos2 θ −2 cos θ sin θ

− cos θ sin θ cos θ sin θ cos2 θ − sin2 θ

 (3.32)

and θ is the off-axis angle of the ply, depicted in Figure 3.8.

FIGURE 3.8. Off-axis lamina with stress transformation. [37]
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Stresses may be related to strains at the laminate level now as:

[σ]kx,y = [Q]kx,y[ε
0]x,y + z[Q]kx,y[κ]x,y (3.33)

where ε0 are the midplane (x-y plane in Figure 3.9) strains, z is the z coordinate

of the k’th ply, and κ are the laminate curvatures. We can define forces per length

and moments per length on the x-z and y-z planes as:


Nx

Ny

Ns

 =
n∑
k=1

∫ zk

zk−1


σx

σy

τs


k

dz and


Mx

My

Ms

 =
n∑
k=1

∫ zk

zk−1


σx

σy

τs


k

zdz (3.34)

Substituting Equation 3.33 in to Equation 3.34, carrying out the integral, and

rearranging gives the relationship between laminate forces, moments, and strains in

the form of: N
M

 =

A B

B D


ε0
κ

 (3.35)

where A, B, and D are the 3x3 laminate stiffness matrices, defined as:

Aij =
n∑
k=1

Qk
ij(zk − zk−1) (3.36)

Bij =
1

2

n∑
k=1

Qk
ij(z

2
k − z2k−1) (3.37)

Dij =
1

3

n∑
k=1

Qk
ij(z

3
k − z3k−1) (3.38)

Inverting the laminate stiffness matrices gives laminate compliances.

a b

c d

 =

A B

B D


−1

(3.39)
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At this point, laminate properties can be extracted as follows, defining the laminate

thickness as h,

Ēx =
1

haxx
Ēy =

1

hayy
Ḡxy =

1

hass
ν̄xy = −ayx

axx
ν̄yx = −axy

ayy
(3.40)

FIGURE 3.9. Laminate section before and after deformation. [37]
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CHAPTER 4

RESULTS AND EXPERIMENTAL COMPARISON

4.1 Two-Phase Composites

In the original publication of the A-G model, Anumandla [23] compared model

predictions to published experimental results from Andrews et al [43]. This

comparison was recreated in Figure 4.1 to ensure MATLAB implementation matched

results from the original publication, and to additionally compare results using the

Halpin-Tsai modification from section 3.1.2.2.
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FIGURE 4.1. Andrews et al. experimental data. [43]
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Good agreement is seen between experimental and theoretical results, but this is

limited to one dataset. A literature survey was done to collect additional

experimental results for comparison, the results of which are shown in figures 4.2

through 4.7. All plots show moduli of fiber and matrix. Numerical data and

assumptions that went in to each plot can be found in the appendix.

On reviewing the plots generated comparing experimental and model results,

several trends can be identified. For the Chamis implementation, a decent portion of

experimental results lie between 5-25% waviness, which agrees well with Anumandla’s

[23] original conclusion. For the Halpin-Tsai model, nearly all experimental results

lie between the 0 and 10% waviness lines, which gives a narrower band of waviness

values than does the Chamis model. Having this small band of lower waviness values

is important since, as discussed in subsection 3.1.1, higher wavy factors violate

transverse isotropy more. To add to this, 0 to 10% waviness seems more realistic

given the high aspect ratios typical of nanotubes. Some experimental results agree

with the 25 and 50% wavy factor lines of the Chamis implementation. In reality,

with nanotube lengths being on the order of millimeters, this could mean the wavy

amplitude is several hundred diameters. This qualitatively does not agree with

Figure 2.9 or other SEM/TEM nanocomposite images seen in literature.

Omidi et al. [33] had the most outlying data points. Below volume fractions of

about 4%, experimental values followed the trend of the 0% waviness lines, but at

slightly higher modulus values. Data for volume fractions between 4 and 10% fell in

between the 0 and 5% waviness lines of each model. A possible explanation for this is

the method of manufacture of the test specimen used in the study. Test coupons

were fabricated through casting in this case. Depending on the flow in to the mold,

there could have been some bias towards a particular direction in alignment of

nanotubes. The authors also state that samples were mechanically polished prior to

testing. Thostensen and Chou [1] prepared MWNT/Polystyrene samples using a
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microtome cutting process and reported distortion of nanotubes in the cutting

direction, meaning the cutting process influenced tube alignment. Details are not

given on the mechanical polishing of Omidi et al. but if polishing was done along

one direction it could again make the nanotubes tend along the cutting plane, which

would violate the random alignment assumption.
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FIGURE 4.2. Iwahori et al. experimental data. [44]
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FIGURE 4.3. Zhou et al. experimental data (0.02/min strain rate). [15]
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FIGURE 4.4. Zhou et al. experimental data (0.20/min strain rate). [15]
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FIGURE 4.5. Zhou et al. experimental data (2.00/min strain rate). [15]
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FIGURE 4.6. Ogale et al. experimental data. [45]
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FIGURE 4.7. Omidi et al. experimental data. [33]

4.2 Three-Phase Composites

Relatively little experimental work has been published regarding three-phase

composites. Yokozeki et al. [14] was the only article reviewed which prepared

three-phase composites using unidirectional fibers. Carbon fiber prepregs were

developed using resin infused with 5 and 10% by weight cup-stacked carbon

nanotubes. Cup-stacked nanotubes are a special form of the MWNT, where each

layer has been rolled up into a conical shape rather than a tube, as depicted in

Figure 4.8. Unidirectional and quasi-isotropic laminates were fabricated and tested.
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FIGURE 4.8. Cup stacked carbon nanotube. [46]

Since unidirectional fibers were used, the laminates can be analyzed using the

current micromechanical model in combination with classical laminated plate theory.

T700SC-12K fibers were used in combination with EP827 epoxy (Japan Epoxy Resin

Co.) for the prepreg material. Detailed material data for these constituents was not

readily available. T-300 Carbon Fiber (Table 4.1) and HY6010 epoxy (Table 4.2)

properties were substituted for analysis, and comparisons between experiment and

theory can be drawn by examining the relative change in properties over the baseline

0% laminate. Tables 4.3 and 4.5 show experimental three-phase results. Tables 4.4

and 4.6 show predictions from CLPT and both micromechanical models. Fiber

volume fraction for each laminate was nominally 65% with a ply thickness of

0.125mm. A waviness value of 10% was assumed for nanotubes.

Regarding the unidirectional laminate, experimental on-axis stiffnesses between

the neat and CNF reinforced composite were statistically identical (standard

deviation of 2.0 for tensile measurements). Both micromechanical models predict

negligible increases in tensile stiffness. These results are expected because on-axis

properties are dominated by the microfiber in the composite.
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TABLE 4.1. T-300 Carbon Fiber Material Data [37]

Tensile Transverse Axial Shear Transverse Shear Poisson Ratio
E1f E2f G12f G23f ν12f

230 GPa 15 GPa 27 GPa 7 GPa 0.20

Transverse experimental stiffness showed an appreciable increase of almost 6%

over the baseline. The Chamis implementation over-predicted this result at 8.5%

over neat values. Experimental results showed good agreement with the Chamis

model having waviness values between 5-25%, so using 10% here may be an

underestimation. Conversely, the Halpin-Tsai implementation showed better

agreement with experiment, albeit under-predicting results slightly.

Quasi-isotropic laminate results had a different behavior than did unidirectional.

First, both A-G models under-predicted stiffness for the the 5 and 10% CNF weight

loadings. The largest discrepancy is seen with the 5% case, where Halpin-Tsai and

Chamis predicted 0.9% and 1.9% respective increases over baseline stiffness, but

experimental results showed an increase of 3%. CNTs could be doing more than just

making the matrix material stiffer. If they are improving the transfer of stress from

the matrix to the microfibers it could result in a higher composite modulus, which

wouldn’t be captured by either of the presented micromechanical models.

It is interesting to note that doubling the weight fraction of nanotubes from 5 to

10% (which in this case is roughly equivalent to doubling volume fraction) in

experiment resulted in only an additional 0.9% increase of stiffness. This could

suggest that loading and stiffness in the 0-10% loading range have a non-linear

relationship. Figure 2.13 had the largest experimental data set for two-phase

composites and exhibits just such a non-linear response in this region.
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TABLE 4.2. HY6010 Epoxy Material Data [37]

Young’s Modulus, Em Poisson’s Ratio, νm Density, ρm

3.7 GPa 0.36 1.17 g/cm3

TABLE 4.3. Three-Phase Composite Experimental Results (GPa), [0]16
Unidirectional Laminate

Source
0% Weight 5% Weight

0◦ Stiffness 90◦ Stiffness 0◦ Stiffness 90◦ Stiffness

Experiment [14] 131 8.61 129 (-1.5%) 9.11 (+5.8%)

TABLE 4.4. Three-Phase Composite Theoretical Results (GPa), [0]16 Unidirectional
Laminate

Source
0% Weight 5% Weight

0◦ Stiffness 90◦ Stiffness 0◦ Stiffness 90◦ Stiffness

A-G (Chamis) + CLPT 150.7 8.793 151.0 (—) 9.537 (+8.5%)
A-G(Halpin-Tsai) + CLPT 150.7 8.793 150.8 (—) 9.143 (+4.0%)
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TABLE 4.5. Three-Phase Composite Experimental Results (GPa), [0/90/± 45]3s
Quasi-Isotropic Laminate

Source 0% Weight 5% Weight 10% Weight

Experiment [14] 46.5 47.9 (+3.0%) 48.3 (+3.9%)

TABLE 4.6. Three-Phase Composite Theoretical Results (GPa), [0/90/± 45]3s
Quasi-Isotropic Laminate

Source 0% Weight 5% Weight 10% Weight

A-G (Chamis) + CLPT 57.8 58.9 (+1.9%) 59.7 (+3.3%)
A-G(Halpin-Tsai) + CLPT 57.8 58.3 (+0.9%) 58.7 (+1.6%)
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this work, an existing micromechanical model (Anumandla-Gibson) for analysis

of carbon nanotube reinforced composites was examined and subsequently

implemented in MATLAB. It was then modified by replacing it’s usage of the Chamis

equations with that of the Halpin-Tsai equations since they are known to yield good

approximations at low volume fractions. The model was then extended to

three-phase composites using classical laminated plate theory.

Two-phase predictions showed promising results when compared with

experimental results from literature. Waviness values between 0 and 25% for the

Chamis model and 0 and 10% for the Halpin-Tsai model agree best with experiment.

Three-phase results tended to under-predict improvement with nanotube loading,

suggesting that another mechanism is at play besides a stiffer matrix.

One of the severely limiting aspects of experimental results thus far is a rigorous

definition of geometry used. As was shown, this geometry determines key properties

of the nanotube. This presents an issue because unlike microfibers which have

relatively consistent geometry, nanotube lengths, diameters, and thicknesses are not

be single valued due to how they are manufactured. Fisher et al. [16] used a

distribution of waviness values in their micromechanical analyses. Along that same

line, a model can be developed which takes a distribution of geometries into account.

This would bring the analysis closer to reflecting reality. It would also allow direct

correlation to experimental tests, where geometries and waviness could be identified

through SEM or TEM imaging using a representative sample.
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APPENDIX

EXPERIMENTAL DATA FROM LITERATURE
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APPENDIX

EXPERIMENTAL DATA FROM LITERATURE

Most experimental results from literature reported data in terms of weight

fractions, save for Andrews et al. (Table A.1, [43]) and Iwahori et al. (Table A.2, [44]).

When conversion to volume fraction had to be made, the following was assumed:

� Matrix Density ρm = 1.3g/cm3

� Fiber Density ρf = 2.0g/cm3

Omidi et al. [33] provided a nanotube modulus ENT = 900GPa. Referring to figures

2.5 and 2.6, this modulus corresponds to a density of about ρf = 1.6g/cm3 which was

used instead of the above ρf = 2.0g/cm3. Volume fraction conversions were made

using the following equation:

vf =
Wf/ρf

Wf/ρf + (1−Wf )/ρm

where Wf is the weight fraction of the fiber.

TABLE A.1. Andrews Experimental Data [43]

Ef = 1.0TPa (Assumed)
Em = 1.9GPa

Volume Fraction,vf Composite Modulus, Ec (GPa)

0.05 2.2
0.1 3.05
0.15 3.85
0.25 4.55
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TABLE A.2. Iwahori Experimental Data [44]

Ef = 1.4TPa
Em = 2.479GPa

Weight Fraction, wf Volume Fraction, vf Composite Modulus, Ec (GPa)

0.05 0.021 2.826
0.10 0.041 3.628
0.05 0.021 2.636
0.10 0.41 3.602

TABLE A.3. Zhou Experimental Data (0.02/min strain rate) [15]

Ef = 1.0TPa (Assumed)
Em = 2.31GPa

Weight Fraction, wf Volume Fraction, vf Composite Modulus, Ec (GPa)

0.01 0.0065 2.39
0.02 0.0131 2.63
0.03 0.0197 2.84

TABLE A.4. Zhou Experimental Data (0.20/min strain rate) [15]

Ef = 1.0TPa (Assumed)
Em = 2.49GPa

Weight Fraction, wf Volume Fraction, vf Composite Modulus, Ec (GPa)

0.01 0.0065 2.64
0.02 0.0131 2.89
0.03 0.0197 3.03
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TABLE A.5. Zhou Experimental Data (2.00/min strain rate) [15]

Ef = 1.0TPa (Assumed)
Em = 2.78GPa

Weight Fraction, wf Volume Fraction, vf Composite Modulus, Ec (GPa)

0.01 0.0065 2.87
0.02 0.0131 3.17
0.03 0.0197 3.44

TABLE A.6. Ogale Experimental Data [45]

Ef = 1.0TPa (Assumed)
Em = 0.112GPa

Weight Fraction, wf Volume Fraction, vf Composite Modulus, Ec (GPa)

0.01 0.0065 0.145
0.05 0.0331 0.178
0.10 0.0674 0.227
0.15 0.1029 0.29
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TABLE A.7. Omidi Experimental Data [33]

Ef = 0.9TPa
Em = 3.11GPa

Weight Fraction, wf Volume Fraction, vf Composite Modulus, Ec (GPa)

0.0025 0.0020 3.23
0.0050 0.0041 3.48
0.010 0.0081 3.67
0.015 0.0122 3.89
0.020 0.0163 4.20
0.030 0.0245 4.45
0.040 0.0327 4.70
0.060 0.0493 4.98
0.080 0.0660 5.22
0.100 0.0828 5.41
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