

NEW BUSINESS SOLUTIONS

FACE-TO-FACE

EDUCATION

Conference: May 23-26, 2016 Exhibition: May 24-25, 2016 Long Beach Convention Center Long Beach, California

www.sampelongbeach.org

MICROMECHANICAL STIFFNESS PREDICTIONS AT THE NANO-SCALE: CARBON NANOTUBE REINFORCED COMPOSITES

Eric Neer Student, Cal State Long Beach

Conference: May 23-26, 2016 Exhibition: May 24-25, 2016 Long Beach Convention Center Long Beach, California

www.sampelongbeach.org

Overview

- Overview and focus of this work
- Application of micromechanical models to nanoscale problems
- Modified Anumandla-Gibson model
- Comparison with experimental results
- Issues and future work

Motivation

- Micromechanical models offer simple algebraic relations between composite variables
- Application to CNTs would aid in material decisions (e.g. material trade)
- Bridge to practicality

Nanotube Reinforced Composites

- Two primary types (3-phase)
- Focus on CNTs in matrix
 - Grafting:
 - Not amenable to micromechanic approaches
 - Involves high temperatures (700-1200C)
 - CNTs in matrix:
 - Similar to existing composites (e.g. CSM)
 - Traditional manufacturing methods

Nanotube Reinforced Composites

- Fundamental issues that must be addressed
 - Waviness
 - Length and aspect ratio
 - Dispersion and agglomeration
 - Orientation

Applying Micromechanics to the Nanoscale

Micromechanics at the Nanoscale

$$E_{1c} = E_f v_f + E_m (1 - v_f)$$

- Desirable to have simple mathematical relationships
- No assumption is made about type of fiber

 Can this be applied directly to
 nanocomposites?

Micromechanics at the Nanoscale

$$E_{1c} = E_f v_f + E_m (1 - v_f)$$

- What is the modulus of the nanotube?
 - Many differing reports from literature
 - Lourie & Wagner: 2.8 3.5 TPa
 - Yakobson & Avouris: 1 Tpa
- Why the discrepancy?

Micromechanics at the Nanoscale

- Discrepancy comes from an assumption in the question
 - Assumes there *is* a nanotube modulus in the traditional sense
- Nanotubes lack a "translational invariance"
 - Characteristic dimensions of tube on same order of carbon atoms
 - More accurate to classify them as structures
 - Geometry dependent properties

Nanotubes as a Structure

- Pipes Filled Cylinder Equivalency
 - Assign graphite in-plane (1.05 TPa) modulus to open cylinder
 - Scale to cylinder using ratio of areas

Nanotubes as a Structure

- Illustrates SWNT "modulus" sensitivity to geometry
 - Concept extends to density as well
- Can select E value given a particular diameter
 - Can we apply micromechanics equations now?

Anumandla-Gibson Model

Waviness

- Borrow micromechanical concepts
- Hsiao & Daniel uniform waviness model
 - Treat each dx slice as off axis lamina
 - Average strains over one wavelength
 - Characterize "waviness" as A/L

Waviness

- Hsiao & Daniel requires zero-waviness properties
- Use Chamis micromechanical equations inside RVE1
 - Present work modified this to use Halpin-Tsai equations

Orientation and Length Effects

- Christensen & Waals model
 - 3D Randomly aligned reinforcement
 - Yields another effective modulus
- Additional matrix sections added to RVE

- Makes reinforcement non-continuous

Orientation and Length Effects

- Must combine all sections to get single RVE2 modulus
 - Inverse rule of mixtures
 - Extension to 3-phase now possible with CLPT

Comparison with Experimental Results

Shortcomings of Data

- Of the 7 data sets presented:
 - 2 reported CNT modulus values
 - 5 reported weight fractions (not volume)
 - 1 reported CNT density
- To Improve:
 - CNT geometry must be reported
 - Parameters are not single valued
 - Attention must be paid to dispersion
 - Better definition of "waviness"

Takeaways

- Micromechanical models are viable for nanoscale problems
- Nanotube geometry is important

THANK YOU

