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Overview

Overview and focus of this work

Application of micromechanical models to
nanoscale problems

Modified Anumandla-Gibson model
Comparison with experimental results
Issues and future work



Motivation

* Micromechanical models offer simple
algebraic relations between composite
variables

* Application to CNTs would aid in material
decisions (e.g. material trade)

* Bridge to practicality



Nanotube Reinforced

Composites
« Two primary types (3-phase)
* Focus on CNTs in matrix
— Grafting:

* Not amenable to micromechanic
approaches
* Involves high temperatures (700-

1200C)
— CNTs In matrix;

« Similar to existing composites (e.g.
CSM)
» Traditional manufacturing methods




Nanotube Reinforced

Composites
 Fundamental issues
that must be addressed
— Waviness
— Length and aspect ratio

— Dispersion and
agglomeration

— Orientation
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Applying Micromechanics to the
Nanoscale



Micromechanics at the Nanoscale
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* Desirable to have simple mathematical
relationships

* No assumption is made about type of fiber

— Can this be applied directly to
nanocomposites?




Micromechanics at the Nanoscale
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« What is the modulus of the nanotube?

— Many differing reports from literature
* Lourie & Wagner: 2.8 — 3.5 TPa
* Yakobson & Avouris: 1 Tpa

* Why the discrepancy?



Micromechanics at the Nanoscale

* Discrepancy comes from an assumption in
the question

— Assumes there Is a nanotube modulus In the
traditional sense

« Nanotubes lack a “translational invariance”

— Characteristic dimensions of tube on same
order of carbon atoms

— More accurate to classify them as structures
« Geometry dependent properties



Nanotubes as a Structure

* Pipes - Filled Cylinder Equivalency

— Assign graphite in-plane (1.05 TPa) modulus
to open cylinder

— Scale to cylinder using ratio of areas

a) Open cylinder model of SWCN b) Filled cylinder model of SWCN



Nanotubes as a Structure

e |llustrates SWNT

“modulus” sensitivity to | — 5 62

® Chiral vector (n,m)
geometry

— Concept extends to
density as well

» Can select E value given

Young's Modulus (GPa)
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Diameter (nm)
— Can we apply |
micromechanics
equations now?
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Anumandla-Gibson Model
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Waviness

« Borrow micromechanical concepts

* Hsiao & Daniel uniform waviness model
— Treat each dx slice as off axis lamina
— Average strains over one wavelength
— Characterize "waviness” as A/L

A




Waviness

* Hsiao & Daniel requires zero-waviness
properties

« Use Chamis micromechanical equations inside
RVE1

— Present work modified this to use Halpin-Tsal
equations
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Orientation and Length Effects

 Christensen & Waals model
— 3D Randomly aligned reinforcement
— Yields another effective modulus

 Additional matrix sections added to RVE
— Makes reinforcement non-continuous
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Orientation and Length Effects

* Must combine all sections to get single
RVEZ2 modulus

— Inverse rule of mixtures
— Extension to 3-phase now possible with CLPT
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Comparison with Experimental
Results



Experimental Comparison
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Experimental Comparison

Young's Modulus, E

Nanofiber Reinforced Matrix
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Experimental Comparison

Nanofiber Reinforced Matrix
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Experimental Comparison

Young's Modulus, E
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Experimental Comparison

Young's Modulus, E
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Experimental Comparison

Nanofiber Reinforced Matrix
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Experimental Comparison

Nanofiber Reinforced Matrix
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Shortcomings of Data

* Of the 7 data sets presented.:
— 2 reported CNT modulus values
— 5 reported weight fractions (not volume)
— 1 reported CNT density

e TOo Improve:

— CNT geometry must be reported
« Parameters are not single valued

— Attention must be paid to dispersion
— Better definition of “waviness”




Takeaways

* Micromechanical models are viable for
nanoscale problems

* Nanotube geometry Is important

THANK YOU



