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ABSTRACT 

Nanotube reinforcement has the potential to provide significant mechanical improvement of 

polymer matrices. For three-phase composites (matrix/nanofiber/microfiber), this affords the 

opportunity to enhance off-axis properties dominated by the matrix. Before carbon nanotubes can 

be effectively used as a composite reinforcement, there must be a method of predicting stiffness 

gained from their use. Researchers have attempted to adapt micromechanical analyses (typically 

reserved for microfiber composites) to the nanoscale. One such model from Anumandla and 

Gibson (2006) accounts for nanotube orientation and waviness (ratio of amplitude to wavelength 

of assumed sinusoid) and relied upon the Chamis micromechanics equations. This is improved by 

implementing the Halpin-Tsai model, known for its accuracy at low reinforcement loadings, where 

nano-composites are typically fabricated. Extension to three-phase composites is done using 

laminated plate theory. 

 

Micromechanical approaches are shown to be appropriate for use on the nano-scale (with proper 

considerations, identified in this work). Published experimental data for two-phase nano-

composites is compared to the current model. Nanotube waviness is seen as a key parameter in 

composite stiffness. Modulus results agree well for waviness values within 10% and qualitatively 

agree with nano-composite SEM/TEM images. Three-phase data is limited, but initial comparisons 

show improvements in off-axis properties within a few percent. 

1. INTRODUCTION 

Many “micromechanical” models exist for the prediction of microfiber lamina stiffness.  Several 

authors have attempted to extend these models to the nano scale for nanocomposite analysis.  

Herein is presented a review of the current work done toward this goal, with an analysis of the 

benefits and drawbacks of each.  Nanotube form is identified as an important parameter in stiffness 

predictions due to the sensitivity of nanotube modulus to geometry. In addition to the nanotubes' 

form, three other factors are discussed which are necessary for reliable nanocomposite stiffness 

predictions.  These are nanotube dispersion in the matrix, orientation effects, and waviness effects. 

The Anumandla-Gibson (A-G) model is a micromechanical framework which is chosen for 

detailed analysis, discussion of sensitivities, and comparison with published experimental results.  

The original model makes use of C.C. Chamis' micromechanical equations for analyzing a 

representative volume element (RVE) consisting of matrix and nanotube. Since nanocomposites 

are generally fabricated at low nanotube volume fraction loadings, the A-G model is modified by 



replacing the Chamis equations with the Halpin-Tsai equations, which are known to agree well 

with experimental results of microfiber composites.  Using classical laminated plate theory, the 

present model is then extended to the realm of so called “three-phase” composites which use 

microfibers and a matrix reinforced with carbon nanotubes.  Again comparisons are made to the 

published experimental results.   

Good agreement is seen between the original and modified models and two-phase experimental 

data.  However, the modified A-G model offers a smaller range of possible waviness values, which 

is important for several reasons.  Three-phase composite data is limited to one data-set, but initial 

results are promising given that the present model predicts experimental results for unidirectional 

and quasi-isotropic laminates to within a few percent. 

2. PROPERTIES OF CARBON NANOTUBES 

2.1 Young’s Modulus, Geometry, and Density 

For simplicity’s sake, it is tempting to assign a Young’s Modulus to a nanotube form for use in a 

micromechanical model, as is done with conventional microfibers.  To this end, several studies 

have attempted to predict an elastic modulus for carbon nanotubes, but have reported a wide range 

of values.  For example, Lourie and Wagner [1] give SWNT modulus values between 2.8 – 3.5 

TPa and MWNT values between 1.7 – 2.4 TPa, whereas Sanchez et al. [2] and Yakobson and 

Avouris [3] report MWNT moduli being approximately 1 TPa and relatively independent of 

diameter.  These and other large discrepancies are due in part to the authors treating nanotubes as 

they would a continuum, without careful consideration of their discrete nature. 

Yakobson and Avouris [3] state that defining an elastic modulus implies a statistical spatial 

uniformity of the material.  Since characteristic nanotube dimensions are on the same order as the 

dimensions of the carbon atoms that the tube is comprised of, there is a lack of “translational 

invariance” in the radial direction.  Thus, a nanotube (whether SWNT, MWNT, or CNF) is not a 

material, but is more accurately an engineering structure [3].  Since CNTs must be treated as 

engineering structures, one cannot define an effective stiffness without taking into consideration 

the geometry of the CNT in question. 

Pipes et al. [4] studied in-depth the intercorrelation between SWNT geometry, density, and tensile 

modulus by first considering the SWNT as a shell with thickness 𝜈 = 0.34𝑛𝑚, the planar 

separation of graphite layers.  Figure 1 (a) depicts the shell model and also shows the carbon atoms 

comprising the shell.  The midplane radius, 𝑅𝑛, of the shell is a function of the nanotube’s chirality 

and the carbon-carbon bond length, 1.421 Å [5].  With this information, the cross sectional area of 

the open cylinder can now be defined.  This area is then assigned a modulus 𝐸𝑛 = 1029 𝐺𝑃𝑎, the 

in-plane modulus of graphite. 

 

 
Figure 1: Open and Filled Cylinder Carbon Nanotubes [4] 



 

The product of area and modulus of the open cylinder allows an effective solid cylinder (Figure 1 

(b)) modulus to be defined through a simple scaling relation.  The effective modulus of the solid 

cylinder will be less than that of the shell model, but the area-modulus product will be identical, 

i.e. (adapted from Thostenson and Chou [6]): 

 

 𝐸𝑠𝑜𝑙𝑖𝑑 =
𝐴𝑜𝑝𝑒𝑛

𝐴𝑠𝑜𝑙𝑖𝑑
𝐸𝑜𝑝𝑒𝑛  

 

This process yields Figure 2, where it can be seen that, depending on SWNT diameter, Young’s 

modulus can vary drastically.  A similar process and results are obtained for nanotube arrays, and 

one could extend the SWNT results to MWNTs by considering the added shell thickness from 

additional nanotubes. 
 

 
Figure 2: Nanotube Modulus vs Diameter [4] 

 
Figure 3: Nanotube Density vs Diameter [4] 

 

  

With nearly all micromechanical models, the volume fraction of the reinforcement in the 

composite is used.  However, as will be seen later, a majority of experimental work done with 

CNTs provide loadings in terms of weight.  This necessitates a definition of a density to allow 

conversion from weight to volume.  The same arguments and complications for defining a Young’s 

Modulus apply to defining a density.  Pipes et al [4] also tackles this discrepancy through a process 

similar to that described above except instead of assigning a modulus to the open cylinder, a mass 

is assigned, namely the mass of the carbon atoms comprising the shell.  The mass is then assumed 

to occupy the volume of the solid cylinder, giving an effective density.  Figure 3 shows the result 

of this exercise. 

 

 

Figure 2 and Figure 3 clearly indicate the sensitivity of nanotube properties to its geometry, thus any 

attempt to predict CNT reinforcing capabilities in two of three-phase composites must being with 

consideration of nanotube geometry. 



2.2 Carbon Nanotube Reinforced Composites 

Carbon nanotubes possess, mechanical, thermal, and electrical properties which are equal or 

superior to any current materials which makes them an attractive candidate for enhancing a variety 

of matrices.  They would offer immediate benefits in structures which cannot accommodate 

conventional reinforcement, such as polymer fibers, foams, and films [7].  Their added benefit 

extends to conventional carbon fiber reinforced polymer composites (CFRPs) as well.  CFRPs 

generally suffer from poor properties in off-fiber directions where material characteristics are 

dominated by matrix properties [8]. 

There are four topics which any micromechanical model must address when predicting 

reinforcement capability of a CNT reinforced matrix [9] [10] [11]. 

 

1. Dispersion/Agglomeration of CNTs.  Nanotubes and other nano-reinforcements exhibit 

exceptionally high surface area to volume ratios compared to conventional 

reinforcements (see Figure 4)  While beneficial to interfacial stress transfer, this large 

surface area also causes CNTs to have a strong tendency to bundle together to for 

agglomerations, which can act as defects in a two or three-phase composite [12].  

Usually in micromechanical analyses, the assumption of uniform dispersion is made. 

 

 
Figure 4: Surface/Volume vs Diameter for Different Reinforcement [12] 

 

2. Orientation.  CNTs have been shown to be highly anisotropic, with off axis properties 

being an order of magnitude less than on axis [13] [14].  If nanotubes tend to orient in 

one direction more than others (as was done in Thostenson and Chou [6] and Mora et 

al. [15] through a drawing process), their anisotropy may be transferred to the 

composite. 

 

3. Length and Aspect Ratio.  Microfiber length has been shown to be an important 

parameter for conventional composites for decades.  Coleman et al. [11] present both a 

modified rule-of-mixtures and the Halpin-Tsai micromechanical models with 

incorporate length efficiency parameters.  The general rule is that, the longer the fiber 

is, the more efficient it is due to an increased area available for stress transfer from the 

matrix to the fiber.  This is expected to apply to nanotube reinforcements as well. 



 

4. Waviness.  Relatively little work has been done to model the effects tube waviness has 

on mechanical properties of CNT reinforced composites [9] [16] [17] [18].  It is 

common to see micromechanical approaches that consider CNTs straight to simplify 

analyses [19] [20] [10] [21] [22] [23].  This simplification, however, usually leads to 

an overestimation of predicted stiffness due in large part to the fact that nanotubes are 

decidedly not straight in experimental settings (without special process to encourage 

alignment, e.g. drawing).  Figure 5 is a TEM image of MWNTs dispersed in a 

polystyrene matrix where one can see the varying degrees of curvature.  This waviness 

degrades the reinforcing capabilities of CNTs and thus must be accounted for. 

 

Interfacial shear strength between the fiber (whether CNF or microfiber) and matrix is an important 

parameter in the normal use of composites, but less so when making stiffness predictions.  The 

perfect bonding assumption is made, and for low strain conditions, this assumption is valid. 

 

 
Figure 5: MWNTs Dispersed in Polystyrene Matrix [24] 

 

3. MODIFIED ANUMANDLA-GIBSON MODEL 

A summary of the Anumandla-Gibson model is presented here.  For an in-depth development of 

the model, the reader is directed to the original publication of the model [16].  Modifications to 

the model are presented in detail with justification and ramifications of each.  Extension of either 

model to three-phase composites is done using classical laminated plate theory and the Halpin-

Tsai micromechanics equations.  Details of these can be found in the thesis that served as the basis 

of the present work [25] or any other text on composites analysis.   

3.1 Anumandla-Gibson 

The Anumandla-Gibson model uses a two-RVE approach, as depicted in Figure 6.  The first step 

in the process is to estimate the properties of RVE1 and the Chamis [26] micromechanics equations 

are used for this.  At this point it is assumed that the fiber is straight, isotropic, and since it spans 

the entire RVE, continuous.  With knowledge of RVE1 properties, RVE1 compliances (for a zero-

fiber-waviness condition) can be calculated.  The assumption of a thin, unidirectional lamina under 

plane stress is made in doing this. 



 

Figure 6: Representative Volume Element (RVE) Used in Anumandla-Gibson 

Effects of fiber waviness are included through use of Hsaio and Daniel’s [27] model where an 

RVE similar to that of RVE1 is used.  This RVE is sliced in to infinitesimal pieces of width 𝑑𝑥.  

Each slice is treated as an off-axis lamina whose properties may be calculated using standard 

micromechanical approached and transformed with the standard transformation matrix.  Averaging 

the strains over one wavelength and having knowledge of the applied stresses allows calculation 

of effective (i.e. with waviness) properties. 

Waviness is quantified through a so called “wavy factor” which is the ratio of the amplitude of the 

nanotube (𝐴 in Figure 6) to the length of RVE1 (𝐿𝑁𝑇 in Figure 6).  Wavy factors of 0, 5, 10, 25, 

and 50% are used in modulus vs volume fraction plots to be shown.  Orientation effects are 

accounted for through the model of Christensen and Waals [38], with RVE1 strains being averages 

over all possible orientations of the nanotube.  Finally, an effective modulus for RVE2 is computed 

through an inverse rule of mixtures using matrix and RVE1 regions of RVE2.  The result of this 

process yields an isotropic modulus of RVE2.  

3.2 Modification 

3.2.1 Micromechanical Model in RVE1 

In the Anumandla-Gibson model, there are actually two sets of micromechanical equations that 

are used.  The Chamis equations are used to predict RVE1 properties, and an inverse rule of 

mixtures is used to predict RVE2 properties.  It is not immediately clear how appropriate the 

Chamis equations are for use here, so they were replaced by the Halpin-Tsai equations to gauge if 

either has an advantage over the other.  The Halpin-Tsai equations, for microfiber composites, are 

known to fit experimental data well at low volume fractions [11].  Since CNT composites are 

almost exclusively fabricated at low loadings (≤ 10%), the Halpin-Tsai model may show 

improvement over the chamis model. 

The generalized Halpin-Tsai model is as follows [28]: 

𝑃�̅�

𝑃𝑚
=

1 + 𝜁𝜂𝑣𝑓

1 − 𝜂𝑣𝑓
 



𝑃𝑐 is a composite property (𝐸22, 𝐺12, or 𝜈23) and 𝑃𝑚 or 𝑃𝑓 is the corresponding matrix or 

fiber property.  𝜁 is a measure of reinforcement and depends on boundary conditions.  

Generally accepted values used for 𝜁 are: 

Property 𝜻 Reference 

𝐸22 2 [28] 

𝐺12 1 + 40 𝜈𝑓
10 [29] 

𝜈23 1  

 

For 𝐸11 and 𝜈12, 𝜁 takes on a very large value for continuous fiber composites.  In the limit as 𝜁 →
∞, the Halpin-Tsai equations reduce to the rule of mixture.  Thus, the rule of mixture is used in 

calculation of these properties. 

Figure 7 shows the result of this exercise.  It can be seen for zero waviness, the two models produce 

identical results, which is expected.  However, with increasing waviness, the Halpin-Tsai model 

shows a quicker reduction in modulus.  At sufficiently low loadings and high waviness, the Halpin-

Tsai equations actually predict a reduction in modulus. Section 4 will compare both the Chamis 

and Halpin-Tsai predictions to experimental results. 

 

Figure 7: Halpin-Tsai and Chamis Models in RVE1 Results 

3.2.2 Isotropic vs Transversely Isotropic CNFs 

One of the key simplifying assumptions made in the A-G model is that the embedded nanotube is 

isotropic.  Though, as was previously mentioned in section above2.1, nanotubes are decidedly not 

isotropic.  It is desired to see how large of an impact this assumption has on model predictions. 

The Chamis and Halpin-Tsai micromechanical models are able to handle transversely isotropic 

reinforcement, so no modification of the equations is necessary.  What is needed are representative 

off-axis nanotube properties, and Table 1 gives values selected for simulation. 
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Table 1: Transversely Isotropic CNT Properties 

Property Value Reference 

𝐸11 1 TPa [30] ((9,0) High AR Uncapped) 

𝐸22 68.3 GPa [13] 

𝐺12 0.37 TPa [31] (1 CNT wall torsion test) 

𝜈12 0.3 [16] 

𝜈23 0.34 [13] 

 

Figure 8 and Figure 9 depict predictions using an isotropic and a transversely isotropic fiber.  The 

difference between the plots is negligible.  For example, at 5% waviness and 25% volume fraction 

each model predicts values shown in Table 2. 

Table 2: RVE2 Sample Results for Isotropic and Transversely Isotropic CNFs (5% waviness, 25% volume fraction) 

Model 
Case 

Isotropic Transversely Isotropic 

Chamis 2.987 GPa 2.981 GPa 

Halpin-Tsai 2.643 GPa 2.629 GPa 

 

 

Figure 8: Waviness Plot with Isotropic Nanofiber 

 

Figure 9: Waviness Plot with Anisotropic Nanofiber 

Similar results are seen for other volume fractions and waviness values.  These suggest that 

considering a fiber to be isotropic is a good assumption for this model.  This is likely due to 

nanofibers being assumed to be uniformly dispersed and randomly oriented, along with the fact 

that primary stiffness contributions come from the nanotube’s exceedingly high tensile modulus. 
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4. COMPARISON WITH EXPERIMENTAL RESULTS 

4.1 Two-Phase Composites 

In the original publication of the A-G model, Anumandla [16] compared model predictions to 

published experimental results from Andrews et al [32].  This comparison was recreated in Figure 

10 to ensure MATLAB implementation matched results from the original publication, and to 

additionally compare results using the Halpin-Tsai modification. 

Good agreement is seen between experimental and theoretical results, but this is limited to one 

dataset.  A literature survey was done to collect additional results for comparison, the results of 

which are shown in Figure 11 through Figure 16.  All plots show moduli of fiber and matrix.  

 

 
Figure 10: Andrews et al Experimental Data with A-G and 

Current Models 

 
Figure 11: Iwahori Experimental Data 

 
Figure 12: Zhou Experimental Data (0.02/s strain rate) 

 
Figure 13: Zhou Experimental Data (0.2/s strain rate) 
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Figure 14: Zhou Experimental Data (2/s strain rate) 

 
Figure 15: Ogale Experimental Data 

 
Figure 16: Omidi Experimental Data 
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On reviewing the plots generated comparing experimental and model results, several trends can 

be identified.  For the Chamis implementation, a decent portion of experimental results lie between 

5-25% waviness, which agrees well with Anumandla’s [16] original conclusion.  For the Halpin-

Tsai model, nearly all experimental results lie between 0 and 10% waviness lines, which gives a 

narrower band of waviness values than does the Chamis model.  Having this small band of lower 

waviness values is important since, as discussed in subsection 3.1.1, higher wavy factors violate 

transverse isotropy more.  To add to this, 0 and 10% waviness seems more realistic given the high 

aspect ratios typical of nanotubes.  Some experimental results agree with the 25 and 50% wavy 

factor lines of the Chamis implementation.  In reality, with nanotube lengths being on the order of 

millimeters, this could mean the wavy amplitude is several hundred diameters.  This qualitatively 

does not agree with Figure 5 or other SEM/TEM nanocomposite images seen in literature. 

 

Omidi et al [33] had the most outlying data points.  Below volume fractions of about 4%, 

experimental values followed the trend of the 0% waviness lines, but at slightly higher modulus 

values.  Data for volume fractions between 4 and 10% fell in between the 0 and 5% waviness lines 

of each model.  A possible explanation for this is the method of manufacture of the test specimen 

used in the study.  Test coupons were fabricated through casting in this case.  Depending on the 

flow in to the mold, there could have been some bias towards a particular direction in alignment 

of nanotubes.  The authors also state that samples were mechanically polished prior to testing.  

Thostenson and Chou [19] prepared MWNT/Polystyrene samples using a microtome cutting 

process and reported distortion of the nanotubes in the cutting direction, meaning the cutting 

process influenced tube alignment.  Details are not given on the mechanical polishing of Omidi et 

al. but if polishing were done along one direction it could again make the nanotubes tend along the 

cutting plane, which would violate the random alignment assumption. 

4.2 Three-Phase Composites 

Relatively little experimental work has been published regarding three-phase composites.  Two 

works were reviewed which reported experimental data for nanotube reinforced hierarchical 

composites. Yokozeki et al. [34] was the only article reviewed which prepared three-phase 

composites using unidirectional fibers.  Carbon fiber prepregs were developed using resin infused 

with 5 and 10% by weight cup-stacked carbon nanotubes.  Cup-stacked nanotubes are a special 

form of the MWNT, where each layer has been rolled up in to a conical shape rather than a tube.  

Unidirectional and quasi-isotropic laminates were fabricated and tested. 

Since unidirectional fibers were used, the laminates can be analyzed using the current 

micromechanical model in combination with classical laminated plate theory. T700SC-12K fibers 

were used in combination with EP827 epoxy (Japan Epoxy Resin Co.) for the prepreg material.  

Detailed material data for these constituents was not readily available.  T-300 Carbon Fiber and 

HY6010 epoxy properties were substituted for analysis, and comparisons between experiment and 

theory can be drawn by examining the relative change in properties over the baseline 0% laminate.   

Table 3 and Table 4 compare experimental results with predicted values.  Changes over baseline 

0% CNF laminates are shown in parentheses. Fiber volume fraction for each laminate was 

nominally 65% with a ply thickness of 0.125mm.  A waviness value of 10% was assumed for 

nanotubes.  



Regarding the unidirectional laminate, experimental on-axis stiffnesses between the neat and CNF 

reinforced composite were statistically identical (standard deviation of 2.0 for tensile 

measurements).  The current model predicts negligible increases in tensile stiffness.  These results 

are expected because on-axis properties are dominated by the microfiber in the composite.  

Transverse experimental stiffness showed an appreciable increase of almost 6% over the baseline.  

The work presented here slightly under-predicts experimental results.  

For the quasi-isotropic laminate, results were under-predicted by a larger margin.  The largest 

discrepancy is seen with the 5% case, where predicted increase in modulus is around 1% whereas 

experimental increase was 3%.  CNTs could be doing more than just making the matrix material 

stiffer.  If they are improving the transfer of stress from the matrix to the microfibers it could result 

in a higher composite modulus.  The assumption of 10% waviness in the nanofiber may also be 

too high, which would quickly degrade predicted modulus.  Section 4.1 showed experimental often 

fell somewhere between 0-10% waviness. 

It is interesting to note that doubling the weight fraction of nanotubes from 5 to 10% (which in this 

case is roughly equivalent to doubling volume fraction) in experiment resulted in only an 

additional 0.9% increase of stiffness.  This could suggest that loading and stiffness in the 0-10% 

loading range have a non-linear relationship.  Figure 16 had the largest experimental data set for 

two-phase composites and exhibits just such a non-linear response in this region. 

Table 3: Three-Phase Composite Results (Experimental and Theoretical) [0]16 Unidirectional Laminate, GPa 

Source 
0% Weight 5% Weight 

0° Stiffness 90° Stiffness 0° Stiffness 90° Stiffness 

Experiment [34] 131 8.61 129 (-1.5%) 9.11 (+5.8%) 

Present Model + CLPT 150.7 8.793 150.8 (--) 9.143 (+4.0%) 

 

Table 4: Three-Phase Composite Results (Experimental and Theoretical) [0/90/+-45]3s Quasi-Isotropic Laminate, GPa 

Source 0% Weight 5% Weight 10% Weight 

Experiment [34] 46.5 47.9 (+3.0%) 48.3 (+3.9%) 

Present Model + CLPT 57.8 58.3 (+0.9%) 58.7 (+1.6%) 

 

5. CONCLUSIONS 

In this work, an existing micromechanical model (Anumandla-Gibson) for analysis of carbon 

nanotube reinforced composites was modified by replacing it’s usage of the Chamis equations with 

that of the Halpin-Tsai equations since they are known to yield good approximations at low volume 

fractions.  The model was then extended to three-phase composites using classical laminated plate 

theory.   

Two-phase predictions showed promising results when compared with experimental results from 

literature.  Waviness values between 0 and 10% for the Halpin-Tsai model agree best with 

experiment.  Three-phase results tended to under-predict improvement with nanotube loading, 



which may suggest another mechanism is at play or assumed waviness values were not 

representative of experimental values. 

One of the severely limiting aspects of experimental results thus far is a rigorous definition of 

geometry used.  As was shown, this geometry determines key properties of the nanotube.  This 

presents an issue because unlike microfibers which have relatively consistent geometry, nanotube 

lengths, diameters, and thicknesses are not single valued due to how they are manufactured.  By 

extension then, there would not be a single value for nanotube modulus.  Improvement to the 

current model can be made with comparison to experimental results that also took note of the 

geometry of nanotubes used.   

Like nanotube geometry, nanotube “waviness” is not, in reality, a single value.  The current model 

suggests waviness values between 0 and 10% are reflective of reality.  However, without 

SEM/TEM images like that of Figure 5, this cannot be said for sure.  If one is to include effects of 

waviness, then more images like this one are necessary to gauge degrees of waviness in 

experiment. 
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